Anti- Humano CD16 (3G8)

Fluorocromo	Referencia	Test
FITC	16F2-100T	100 test
PE	16PE2-100T	100 test

DESCRIPCIÓN DEL PRODUCTO

Otros nombres: FcyRIII, FcgammaRIII

Descripción: el anticuerpo monoclonal anti-CD16 procede de la hibridación de células de mieloma de ratón y células de bazo de ratón inmunizado con neutrófilos humanos. El anticuerpo está formado por una cadena pesada IgGI y una cadena ligera kappa. **Clon:** 3G8

HLDA: El anticuerpo anti-CD16 clon 3G8 fue incluido en el 5° taller de trabajo sobre antígenos de diferenciación de Leucocitos humanos con el código NK8O

Isotipo: Ratón IgG1, ka<u>p</u>pa

Reactividad: Humano y primates no humanos.

Fuente: Sobrenadante procedente de un cultivo *in*

vitro de células de un hibridoma celular

Purificación: Cromatografía de afinidad por proteína A. **Composición:** Anticuerpo monoclonal de ratón anti-CD16 humano conjugado con un fluorocromo y en solución acuosa que contiene proteína estabilizante y el 0,09% de azida sódica (NaN₃).

Fluorocromo	Reactivo suministrado	Concentración (µg/ml)
FITC (Isotiocianato de fluoresceína)	100 ug en 2 ml	50
PE (Ficoeritrina)	25 ug en 2 ml	12,5

USO PROPUESTO.

El CD16 clon 3G8 de Immunostep es un anticuerpo monoclonal que puede ser usado en diagnóstico *in vitro* para la identificación y enumeración por citometría de flujo de granulocitos, células NIK, linfocitos y macrófagos de muestras humanas que expresen CD16.

RELEVANCIA CLÍNICA

Este marcador puede ser usado sólo o en combinación con otros marcadores para el diagnóstico o pronóstico de algunas inmunodeficiencias, enfermedades autoinmunes, leucemias...

PRINCIPIOS DEL TEST.

El anticuerpo monoclonal anti-CD16 se une a la superficie de las células que expresan el antígeno CD16. Para identificar estas células se incuba la muestra con el anticuerpo y se analiza en un Citómetro de flujo.

CONDICIONES DE AMACENAMIENTO Y MANIPULACIÓN ADECUADOS.

Guardar en oscuridad, refrigerado entre 2 y 8 °C. NO CONGELAR. El anticuerpo es estable hasta la fecha que aparece en la etiqueta del vial si se almacena entre 2°-8° C. No usar después de esta fecha.

Una vez abierto el vial el producto es estable durante un periodo de 90 días.

EVIDENCIAS DE DETERIORO.

Los reactivos no deben ser utilizados si se encuentra alguna evidencia de deterioro. Para más información, contacte con nuestro servicio técnico tech@immunostep.com

La apariencia normal es la de un líquido semitransparente. No deben aparecer precipitados ni presentar turbidez. No debe presentar olor.

RECOMENDACIONES Y ADVERTENCIAS.

- a) Los reactivos contienen azida sódica. Bajo condiciones ácidas, se transforma en ácido hidrazónico, un compuesto extremadamente tóxico. Los compuestos de azida deben ser disueltos con agua corriente antes de ser desechados. Se recomiendan estas condiciones para evitar depósitos en las tuberías, donde se podrían desarrollar condiciones explosivas. Ficha de datos de seguridad (FDS) disponible en la web www.immunostep.com
- Evitar contaminación microbiana del reactivo.
- Debe evitarse la exposición a la luz. Use luz tenue durante la manipulación, incubación con células y antes del análisis.
- d) No pipetear con la boca.
- En el caso de contacto con la piel lavar con abundante agua.
- f) Las muestras deben tratarse de la misma manera que aquellas que pudiesen transmitir infecciones. Debe disponerse de los métodos apropiados para su manejo.
- g) No usar después de la fecha de caducidad establecida en el vial.
- h) Desviaciones de los procedimientos recomendados podrían invalidar los resultados de los análisis.
- i) PARA DIAGNÓSTICO *IN VITRO*
- j) Sólo para uso profesional.
- Antes de adquirir las muestras se debe verificar que el citómetro de flujo está calibrado y compensado.

RECOGIDA DE MUESTRAS.

La extracción de muestras de sangre venosa debe hacerse en tubos de recolección de sangre usando el anticoagulante apropiado (EDTA o heparina)^{2,3}. Para resultados óptimos, la muestra debe ser procesada durante las 6 horas posteriores a la extracción. Las muestras que no puedan ser procesadas en las 48 horas posteriores a la extracción deben ser descartadas.

MATERIALES REQUERIDOS NO SUMINISTRADOS.

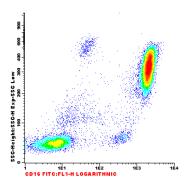
Controles isotípicos:

Fluorocromo	Control isotípico	Referencia Immunostep
FITC	Mayraa JaC1	ICIGGIF-100UG
PE	Mouse IgG1	ICIGGIPE-50UG

- Centrifuga
- Tubos de ensayo de 12 x 75 mm habituales para citometría de flujo
- Micropipetas capaces de dispensar volumen de entre 5 μl y 2 ml.
- Tubos de recolección de sangre con anticoagulante.
- Tampón de fosfato salino (PBS) con 0,09% de azida sódica. Es recomendable añadir BSA al 0,5%.
- Sistema de vacio
- Solución de lisis
- Citómetro de flujo equipado con láser y filtros adecuados al fluorocromo.
- Agitador Vortex

PREPARACIÓN DE LA MUESTRA:

- Añadir el volumen recomendado en el vial del anticuerpo a un tubo de citometría 12x75 mm. Es recomendable preparar un tubo adicional con el control isotípico adecuado (ver materiales requeridos pero no suministrados)
- Añadir 100 µL de muestra (hasta 10⁶ células) v mezclar adecuadamente en el vortex.
- Incubar en oscuridad a temperatura ambiente (20-25° C) durante 15 minutos o a 4° C durante 30 minutos.
- Añadir 2 ml de la solución de lisis, agitar en el vortex e incubar en oscuridad durante 10 minutos o hasta que la muestra esté lisada.
- Centrifugar a 540g durante 5 minutos y aspirar el sobrenadante con cuidado de no tocar el pellet celular. Dejar unos 50 μl de líquido sin aspirar.
- Resuspender el pellet.
- 7. Añadir 2 ml de PBS (ver materiales requeridos pero no suministrados)
- Centrifugar a 540g durante 5 minutos y aspirar el sobrenadante con cuidado de no tocar el pellet celular. Dejar unos 50 µl de líquido sin aspirar.
- 9. Resuspender el pellet en 0,3 ml de PBS.


Adquirir en un citometro de flujo o almacenar a 2-8° C en oscuridad hasta el análisis. Las muestras deben ser adquiridas durante las 3 horas siguientes a la lisis.

ANALISIS POR CITOMETRÍA DE FLUJO.

Recoger la fluorescencia atribuida al anticuerpo monoclonal CDI6 y determinar el porcentaje de células marcadas

Se debe usar un control isotípico conjugado con el mismo fluorocromo, del mismo tipo de cadena pesada de inmunoglobulina y concentración que el CD16 para estimar y corregir la unión no específica de los linfocitos (ver materiales requeridos pero no suministrados). Generar una región de análisis para eliminar el ruido de fondo de la fluorescencia y para incluir las células marcadas correctamente.

A continuación se muestra un ejemplo de representación del marcaje en sangre periférica de un donante sano

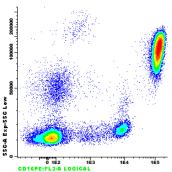


Fig. 1: Arriba una representación biparamétrica de la intensidad media de fluorescencia de la población de leucocitos CD16 y su complejidad interna (SSC) en una muestra de sangre periférica de donante sano para FLI. Abajo, la misma representación para FL2. Las imágenes pertenecen a muestras diferentes y fueron adquiridas en citómetros de flujo diferentes.

LIMITACIONES DEL PROCEDIMIENTO

- La incubación del anticuerpo con las células sin seguir los procedimientos recomendados puede concluir con una disminución o pérdida de los determinantes antigénicos de la superficie celular
- Los valores obtenidos de individuos normales pueden variar entre distintos laboratorios, por tanto, se recomienda que cada laboratorio establezca sus propios rangos de normalidad.
- 3. Las células anómalas o las líneas celulares pueden mostrar una mayor densidad antigénica que las células normales. Esto podría requerir, en algunos casos, el uso de una mayor cantidad de anticuerpo monoclonal de la que se indica en los procedimientos de preparación de la muestra
- 4. En muestras de sangre completa, los eritrocitos encontrados en muestras patológicas, al igual que las células de la serie roja nucleadas (tanto de muestras normales como patológicas), pueden ser resistentes a la lisis. Se pueden necesitar tiempos más largos de lisis de eritrocitos para evitar la inclusión de las células no lisadas en la región delimitada de los leucocitos.

- Las muestras de sangre no deberían refrigerarse por un periodo excesivo (más de 24 horas), ya que el número de células viables irá disminuyendo con el tiempo, pudiendo incluso interferir en el análisis
 - Para obtener mejores resultados, debería mantenerse a temperatura ambiente minutos antes de la incubación con el anticuerpo monoclonal.
- Los resultados más precisos con los procedimientos de citometría de flujo dependen de un alineamiento y calibración correctos de los láseres, al igual que del establecimiento de las regiones correctas.

VALORES DE REFERENCIA.

Resultados anormales en el porcentaje de células que expresen el antígeno o en los niveles de expresión de éste pueden ser debidos a estados patológicos. Es recomendable conocer los patrones normales de expresión del antígeno para poder hacer una interpretación adecuada de los resultados^{4,5,6}.

Los valores obtenidos de individuos sanos podrían variar entre distintos laboratorios. Se recomienda que cada laboratorio establezca sus propios rangos de normalidad.

CARACTERÍSTICAS

ESPECIFICIDAD

El anticuerpo anti-CD16 clon 3G8 fue incluido en el 5° taller de trabajo sobre antígenos de diferenciación de Leucocitos humanos (HLDA) con el código NK80⁷

El anticuerpo va dirigido contra el antígeno CD16 también conocido como FcgammaRIII, un receptor de IgG de baja afinidad. En los humanos el FcgammaRIII se expresa en dos isoformas, el CD16a o FcgammaRIIIA es una proteína transmembrana que aparece expresada en células NK, monocitos, macrófagos y alguna subpoblación de células T, y el CD16b o FcgammaRIIIB es una proteína monomérica anclada al GP1 que se expresa en neutrófilos. El clon 3G8 reconoce las dos isoformas de CD16.

Para analizar la especificidad se evaluaron 10 muestras obtenidas de individuos sanos de raza caucásica. Estas fueron teñidas con anticuerpo monoclonal CD16 FITC y procesadas según el protocolo descrito en el punto 6. Además, se utilizaron otros anticuerpos específicos de las diferentes poblaciones analizadas.

Se seleccionaron las células positivas para CD16 dentro de la región de los linfocitos, monocitos, y neutrófilos.

El resultado se muestra en la siguiente tabla:

El lesaltado se maestra en la siguiente tabla.					
Estadística descriptiva					
	Mínimo	Máximo	Media	Desviación típica	
% Linfocitos	20,67	54,74	37,8430	12,21438	
% Monocitos	87,06	99,23	95,7160	3,65455	
% Neutrófilos	89,69	100,00	98,9620	3,25790	
Validos N	10				

LINEALIDAD

Para el análisis de la linealidad se realizaron diferentes diluciones de una población positiva y una población negativa manteniendo el número total de células constante y se analizó la relación de los porcentajes esperados con los porcentajes obtenidos.

Los datos obtenidos se muestran en la siguiente tabla:

R	R Cuadrado	Error típico de la estimación	Regresión lineal
1	,998	1,66288	Y= 1,0025X - 0,326

REPETIBILIDAD y PRECISIÓN ENTRE LOTES

La repetibilidad del anticuerpo monoclonal CD16 clon 3G8 fue determinada realizando 10 réplicas de 10 sangres periféricas anticoaguladas procedentes de individuos sanos. Además la precisión entre lotes fue analizada utilizando 2 lotes diferentes del anticuerpo CD16 PE para cada muestra⁸. Esto hace un total de 200 determinaciones para analizar la repetibilidad del anticuerpo y su precisión entre lotes. La precisión entre lotes del anticuerpo CD16FITC fue analizada utilizando 3 lotes diferentes para cada muestra. Esto hace un total de 300 determinaciones para analizar la Repetibilidad del anticuerpo y su precisión entre lotes. Los resultados se muestran en la siguiente tabla:

		Repetibi	lidad	Precisión ent	re lotes
	Parámetro analizado	Desviación típica % CV		Desviación típica	% CV
FITC	IMF	3548,60	12,22	3500,31	12,20
H	% células positivas	1,68	2,96	1,00	1,68
PE	IMF	17206,94	14,45	10946,52	13,93
۵	% células positivas	6,31	1,24	0,13	0,21

<u>REPRODUCIBILIDAD</u>

Para demostrar la reproducibilidad o la precisión inter-laboratorio, se marcaron 5 réplicas de 5 muestras diferentes de sangre periférica anticuagulada, procedente de donantes sanos y estabilizadas con estabilizante celular⁸. Las muestras fueron adquiridas durante 5 días seguidos en tres laboratorios diferentes.

Un total de 375 determinaciones fueron realizadas para demostrar la precisión interlaboratorio del CD16 clon 3G8.

El resultado del análisis aparece mostrado en el siguiente cuadro:

	Precisión entre días		Precisión laborato	
Parámetro	SD	% CV	SD	% CV
% células positivas	5,92	14,73	3,37	8,39

GARANTIA

Los productos de Immunostep tienen garantía en cuanto a la cantidad y el contenido indicado en la etiqueta del producto en el momento de la entrega al cliente. Immunostep renuncia a cualquier otra garantía. La responsabilidad de Immunostep se limita al remplazo de los productos o el reembolso del precio de compra.

REFERENCIAS

- Lu W, Mehraj V, Vyboh K, Cao W, Li T, Routy JPI.
 J. Int. AIDS Soc. 2015 Jun 29. CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients.
- Procedures for the collection of diagnostic blood specimens by venipuncture- approved standard; Fifth edition (2003). Wayne PA: National Committee for Clinical Laboratory Standards; Document H3-A5.
- Standard Procedures for the Collection of Diagnostic Blood Specimens", publicado por el National Committee for Clinical Laboratory Standards (NCCLS)
- Clinical applications of flow cytometry: Quality assurance and immunophenotyping of lymphocytes; approved guideline (1998). Wayne PA: National Committee for Clinical Laboratory Standards; Document H42-A.
- Kotylo PK et al. Reference ranges for lymphocyte subsets in pediatric patients. Am J Clin Pathol 100:111-5 (1993)
- Reichert et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol 60:190-208 (1991)
- Knapp W, Dorken B, Gilks W et al., eds. Leucocyte Typing IV.Oxford: Oxford University Press, 1989.Garland Publishing Inc.; 1997. p. 65-7
- CLSI EP05-A3. Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline-Third Edition.
- Raziuddin SI, Teklu B. Severe T lymphocyte immunodeficiency associated with hypogammaglobulinemia: defective lymphokine secretion but enhanced autologous mixed lymphocyte reaction. J Clin Immunol. 1989 Nov;9.
- Rijkers GTI, Scharenberg JG, Van Dongen JJ, Neijens HJ, Zegers BJ. Abnormal signal transduction in a patient with severe combined immunodeficiency disease. Pediatr Res. 1991 Mar;29
- Walker CM, Moody DJ, Stites DP, Levy JA. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19.

FABRICADO POR:

Immunostep S.L Avda. Universidad de Coimbra, s/n Cancer Research Center (CIC) Campus Miguel de Unamuno 37007 Salamanca (Spain) Tel. (+34) 923 294 827 www.immunostep.com