ExoStep™ Serum/Plasma

Exosome FACS analysis for exosomes derived from human Serum/Plasma.

INTRODUCTION

Exosomes are small extracellular vesicles that are released from cells upon fusion of an intermediate endocytic compartment, the multivesicular body (MVB)¹, with the plasma membrane. They are thought to provide a means of intercellular communication^(2,3) and of transmission of macromolecules between cells allowing the spread of proteins, lipids, mRNA, miRNA and DNA and as contributing factors in the development of several diseases. Exosomes can also modulate cancer microenvironment⁽⁴⁾ and the immune response ^(5,6).

2. PRODUCT DESCRIPTION

The kit is a simple immunobead assay for isolation/detection of exosome, using a bead-bound anti-CD9 capture antibody and a fluorochrome conjugated anti-CD8I detection antibody. The kit provides reproducible results and can be run in parallel to exosome immunophenotyping.

The use of IgG2a as a control recommended. It is compatible with this kit so it can be used simultaneously. Isotypes controls are monoclonal antibodies produced against a synthetic hapten, which is normally not present in humans or animals using inf flow cytometry. They are often used as negative controls.

- Tested application: Flow Cytometry (7,8).
- Species reactivity: Human
- Storage buffer: aqueous buffered solution containing protein stabilizer and 0.09% sodium azide (NaN3).
- Recommended usage:Immunostep's ExoStep, is intended for the immunoisolation (immunomagnetic or FACS) and Flow Cytometry analysis of pre-enriched CD63+/CD9+ human exosomes from biofluids (serum, plasma, urine) or cell culture media.
- Presentation: Liquid

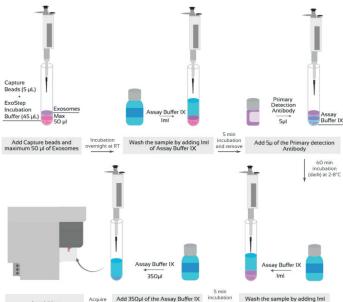


Figure 1: Immunobead assay for isolation/detection of exosome workflow

3. REAGENTS PROVIDED

DESCRIPTION	COMPONENTS	AMOUNT	\sum
Superparamagnetic Capture Beads	CD9 capture beads. Polystyrene micro-par- ticles with Mean Diameter (µm) 6.5± 0.2 (CV<5%), having discrete fluorescence intensity characteristics	6000 beads/test (5 µl/test)	25 test
ExoStep Incubation Buffer	Incubation buffer for ExoStep kits	1,2 ml (45 µl/test)	25 test
Primary detection antibody	Anti-CD8I PE (Clone M38)	(5 µl/test)	25 test
Assay Buffer IOX	PBS 10% BSA, pH 7,4 – 10X . Do not freeze. Dilute contents of the 10X Assay Buffer to 1X (PBS 1% BSA) in PBS, for use in this assay	10 ml	

4. APPROPIATE STORAGE AND HANDLING CONDITIONS

Store in the dark, refrigerated between $2 \, ^{\circ}\text{C}$ and $8 \, ^{\circ}\text{C}$. DO NOT FREEZE. The kit is stable until the expiry date stated on the vial label if kept at $2 \cdot 8 \, ^{\circ}\text{C}$. Do not use after the date indicated.

REAGENTS NOT PROVIDED

- Isotype control IgG2a. IgG2a capture beads can be purchased. It appears in the catalog with IGGICB-25 reference.
- Pre-enriched exosomes by ultra-centrifugation.
- Magnetic Rack; MagneSphere(R) Mag. Sep. Stand 12-hole, 12x75mm (PROMEGA, Ref Z5343).
- 12x75 mm Polystyrene Round Bottom Tubes (cytometer tubes).
- Sterile syringe filter with a 0.45 μm pore (EMD Millipore Millex, Ref: SLHV033RS)
- Syringe of adequate volume.

6. EVIDENCE OF DETERIORATION

Reagents should not be used if any evidence of deterioration is observed. For more information, please contact our technical service: tech@immunostep.com

7. RECOMMENDATIONS AND WARNINGS

- a. Avoid microbial contamination of the reagent. Assay buffer IX can be filtered before
- Microspheres and reagents should be protected from prolonged exposure to light throughout this procedure.
- c. Microspheres are internally dyied with a fluorescent dye (fluorescent in PerCP, PerCP-Cy5, PerCP-Cy5.5 and APC). For exosome staining protocol ensure that the detector antibody does not occupy these fluorescent channels.
- d. The samples should be treated with appropriate handling procedures.
- e. Depending on the type of exosomes used, the number of exosomes may vary with respect to the concentration of the protein.
- f. Do not use after the expiry date indicated on the vial.
- g. Deviations from the recommended procedure could invalidate the analysis results.
- Before acquiring the samples, it is necessary to make sure that the flow cytometer is calibrated and compensated.
- The isolation and detection success is dependent on the quality of the sample pre-enrichment process.
- Pay attention if the kit is used in combination with annexin assays. The buffer used to work with annexin generates non-specificity with the Exostep kit.

WARRANTY

Warranted only to conform to the quantity and contents stated on the label or in the product labelling at the time of delivery to the customer. Immunostep disclaims hereby other warranties. Immunostep sole liability is limited to either the replacement of the products or refund of the purchase price.

SAMPLE PREPARATION

Exostep allows the detection of isolated exosomes from differential ultracentrifugation (a) as well as direct detection in the sample without the need for ultracentrifugation, just with simple pretreatment (b).

a) Purification of Exosomes by Differential Ultracentrifugation.

The kit has been validated for pre-enriched human exosomes from cell culture and bodily fluids, such as serum/plasma, and urine, through an ultracentrifugation protocol (Fig. 2)⁹. The principle for exosome purification is the same for cell culture and bodily fluids, but due to the viscosity of some fluids it is necessary to dilute them with an equal volume of PBS, before centrifugations.

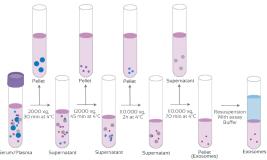


Figure 2: Workflow for the exosome pre-enrichment based on differential ultracentrifugation. Please, refer to https://immunostep.com/exosomes/ for additional technical information.

b) Sample pretreatment for direct exosome detection on Serum/ Plasma.

The sample pretreatment for direct exosome detection from serum or plasma is not recommended for detection of exosomes from any other body fluids or cell culture media.

Specific sample pretreatment protocols are available for urine and cell culture media, each optimized for its specific type of biological sample. $100-1000\mu L$ of serum/plasma typically provides enough exosomes for most standard types of analysis.

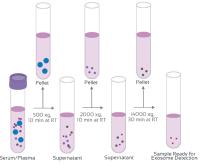


Figure 3: Serum Supernatant pretreatment workflow for direct exosome detection. Please, refer to https://immunostep.com/exosomes/ for additional technical information.

10. PROTOCOL

Isolate CD9+ exosomes

- Resuspend the capture beads by vortex for approximately 20 seconds.
- Add 5µL of the capture bead to each 12x75 mm Polystyrene Round Bottom tube (cytometer tube).
- 3. Add $45\mu L$ of ExoStep Incubation Buffer and a vortex for 20 seconds.
- Add 50µL of sample previously prepared according to "Sample Preparation" to the appropriate tubes. Mix the reactions gently by pippeting up and down several times with a pipette and vortexing for few seconds.
- Add between 10-15ug of exosomes isolated by differential ultracentrifugation or until 100ul for direct exosomes. Previously prepared according to "Sample Preparation" to the appropriate tubes. Mix the reactions gently by pipetting up and down several times with a pipette and vortexing for few seconds.
- 6. Incubate in the dark overnight at room temperature (RT). NO STIRRING.
- After overnight incubation wash the sample (bead-bound exosomes) by adding lml of Assay Buffer IX.
- 8. Collect the magnetic beads by placing tubes on a magnetic rack and incubate 5 minutes or by centrifugation at 2500xg for 5 minutes. Remove supernatant from tubes by Hand-decanting in the case of using the magnetic rack (Fig. 4) or by aspiration. Take care not to disturb the microspheres, and make sure not to leave more than 100ul of supernatant in the tube.

Stain exosomes for flow cytometry

- Add 5ul of the primary detection antibody to the bead-bound exosomes tube. Mix gently by pipetting and/or by tapping. It is advisable to prepare an additional tube with the appropriate isotype control or without exosomes, for background determination.
- Incubate in the dark 60 minutes at 2-8°C, without stirring.
- Wash the sample (bead-bound exosomes) by adding 1 ml of Assay Buffer 1X.
- Collect the Magnetic beads by placing tubes on a magnetic rack and incubate 5 minutes or by centrifugation at 2500xg for 5 minutes. Remove supernatant from tubes by hand-decanting in the case of using the magnetic rack (Fig. 4) or by aspiration. Take care not to disturb the microspheres, and make sure not to leave more than 100ul of super-
- Resuspend the sample in 350µL Assay Buffer IX and Acquire on a flow cytometer or store in the dark max up to 2 hours at 2-8°C, until the analysis is carried out.

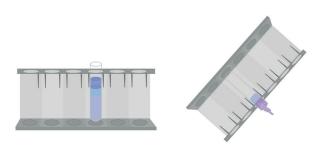


Figure 4: Hand-decanting supernatant using a Magnetic Rack.

11. ASSAY ACQUISITION

An adequate gating strategy FSC / SSC and PerCP/APC. PerCP-Cv5/APC or PerCP-Cv5.5/APC helps bead population identification and discrimination of doublets on flow cytometer.

- Gate on the single population(s) on a Forward Scatter vs. Side Scatter plot in linear scale. (Fig. 5A).
- Gate on the single population(s) on a PerCP vs. APC channel (bead auto fluorescence) in logarithmic scale (Fig. 5B)
- Using the PE channels, determine whether or not any bead populations tested "positive" for the exosome. Note: A positive bead will produce a fluorescent peak in the PE channel.

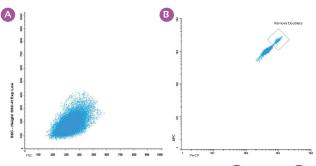


Figure 5: Dot-plot gating strategy for acquisition and analysis. FSC vs SSC and A PerCP vs APC

12. FLOW CYTOMETRY ANALYSIS

ExoStep has been used for detection of exosome derived from different sources:

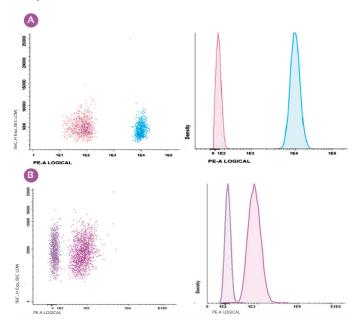
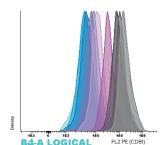


Figure 6: Flow analysis of exosomes bound to ExoStep. Cell culture exosomes, pre-enriched using Total Exosome Isolation from PC3 Cell Culture Media (A) and human plasma/ serum (B), were resuspended in PBS and bound to CD63 and CD9-capture beads during an overnight incubation. The following day the bead-bound exosomes were direct stained with primary antibody detection (CD9/CD81-PE) and analyzed by flow cytometry.

13. REPRODUCIBILITY

- Sample: Serum-derived exosomes.
- Batch: 3 different batches.
- Cytometer: Acquired every day in 2 different cytometers.
- Replicate: 4 replicates assayed for 3 days not necessarily consecutive.
- Protocol: Bead-Based Flow Cytometric Assays.


Intra assay: It was determined calculating the deviation and the CV for each of the samples by batch. Was analyzed the mean of all typical deviations and CVs of 3 days for each lot. Finally, was obtained the mean of the standard deviation and the CV of the three lots.

Inter assay: It was determined the mean of the 4 repetitions for each day and compare them between each batch taking the standard deviation and the CV. Was calculated the mean deviation thus obtained and the CV of the three days.

	CV (%)
Intra Assay	10%
Inter Assay	11%

PERFORMANCE DATA 14.

Limit of Detection (LOD), dynamic range and linearity of exosome kit was assessed at Immunostep. LOD is the lowest quantity of exosomes that is distinguished from the absence of analyte (a blank value), and as reference, was determined in >0,125 µg which corresponds with >1.25 * 109 vesicles. Whilst the upper limit or saturation level was established in 50ug. For both technical specifications were used exosomes from serum (1*106 vesicles/µI). (Fig. 7).

- 1111		
	IMF	μg
	3798	0,00000
	3928	0,06000
	4644	0,13000
	6562	0,25000
	8462	0,50000
	12009	1,00000
	16350	2,00000
	25721	4,00000
	81505	8,00000
	111061	16,00000
	162101	32,00000
	163028	64,00000

Figure 7: Dynamic range of the assay analyzed by flow cytometry. Relationship between background noise and specific signal at different exosome concentrations

Several measurements of multiple concentrations of lyophilized exosomes were analyzed across the reportable range of the kit, finding the linearity of the kit in a broad range of concentrations, allowing fluorescence interpolation in the estimation of concentrations. Please, refer to our website technical support www.lmmunostep.com.

- * PE (Ex-Max 496 nm/Em-Max 578 nm); Excitation laser line 488 nm
- * FITC (Ex-Max 494 nm/Em-Max 519 nm); Excitation laser line 488 nm
- * CF-Blue (Ex-Max 401 nm/Em-Max 452 nm); Excitation laser line 405 nm

15. REFERENCES

- Yáñez-Mó M, Siljander P, Andreu Z, Bedina Zavec A, Borràs F, Buzas E et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles. 2015;4 (1):27066.
- Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L, Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016.
- Tkach M. Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. 2016 Cell 10:164(6):1226-32.
- Becker A, Thakur BK, Weiss JMI, Kim HS, Peinado H, Lyden D Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016 Dec 12:30(6):836-848.
- López-Cobo S, Campos-Silva C, Valés-Gómez M. Glycosyl-Phosphatidyl-Inositol (GPI)-Anchors and Metalloproteases: Their Roles in the Regulation of Exosome Composition and NKG2D-Mediated Immune Recognition. Front Cell Dev Biol. 2016 Sep 12;4:97.
- Jonathan M. Pitt, Guido Kroemer, Laurence Zitvogel Extracellular vesicles: masters of intercellular communication and potential clinical interventions. 2016 J Clin Invest. 2016:126(4):1139-1143
- Campos S, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martínez-Piñeiro L, Yáñez-Mó M, Valés-Gómez M. High sensitivity detection of extracelular vesicles immune-captured from urine by conventional flow citometry. Sci Rep. 2019; Feb 14:9(1):2042.
- Jara-Acevedo R, Campos-Silva C, Valés-Gómez M, Yáñez-Mó M, Suárez H, Fuentes M. Exosome beads array for multiplexed phenotyping in cancer. J Proteomics. 2019; Apr
- Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology.

15. MANUFACTURED BY

IMMUNOSTEP S.L.

Address: Avda. Universidad de Coimbra, s/n Cancer Research Center (C.I.C) Campus de Unamuno 37007 Salamanca (Spain) Telf./fax: (+34) 923 294 827 info@immunostep.com www.immunostep.com